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A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied
to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in
the Hamiltonian as the energy of any mode falls below a specified value.

1. Introduction

A well-known shortcoming of the quasi-classical trajectory
method is the failure to enforce zero-point energy (ZPE).1-14

This is of course an error inherent in classical mechanics,
because ZPE is a manifestation of the quantum uncertainty
principle. Consequently, no matter how accurately one can
assign the ZPE to each normal mode of a molecule initially,
after a number of steps, the energies in these modes may
fluctuate. One consequence of this energy fluctuation may be
the formation of reaction products with energy less than the
ZPE. This can also become a critical issue if the ZPE is
comparable to the barrier height of a reaction.

The energy fluctuation between modes for a multimode
Hamiltonian is caused by the mode-mode coupling. If there
was only one mode in the Hamiltonian, then the mode energy
would be conserved. In the case of separable modes, the energies
for these modes would be conserved as well. Any coupling terms
between the modes in the Hamiltonian cause energy transfer
between them. Without any control of the coupling term, it is
possible for one mode to transfer its energy to other modes and
to lose energy less than the ZPE.

Independently, Bowman and co-workers15 and Miller and co-
workers9 proposed a method to constrain the ZPE by changing
the sign of the momentum when the energy of any mode reaches
the ZPE. This method did prevent energy from going below
the ZPE, however, since the momentum change occurs instan-
taneously, it is equivalent to an infinite impulse that is perhaps
too abrupt and can cause noise in say a classical correlation
function. Here, we propose another method to constrain the ZPE
by smoothly switching off mode coupling when the energy in
a mode drops below the ZPE. An application is made to the
degenerate Henon-Heiles system.

2. Method and Application

2.1. Method.Consider a generaln-mode Hamiltonian written
as

whereH0 is a separable, zero-order Hamiltonian given by∑i hi

andVc is an intrinsic coupling term. The objective is to eliminate
coupling when the energy in a mode or modes (defined

according toH0) drops below a specified value. How this is
done for the mode(s) in question depends to some extent on
how the coupling potential is represented. One possibility is to
write Vc in an n-mode representation as follows16

Then the proposal is to modify this representation ofVc by the
following expression

whereS(i) is a switching function that depends on the energy
in mode i. One possible expression forS(i) that contains the
flavor of the approach is the unit step functionθ[εi(t) - εi,zpe],
where εi(t) is the energy of modei at time t. Clearly, this
“instantly” turns off the coupling between modei and all other
modes if the modei energy drops below the ZPE of that mode.
This is too abrupt in two important ways. First, as written, this
is an explicitly time-dependent term which can “spoil” energy
conservation, and second, once the mode coupling is totally
eliminated, it cannot “return”. This means that modei is
basically eliminated from further coupling in the dynamics. To
deal with both of these defects, we propose a smoother switching
and one that is not explicitly a function of time. Thus, we
proposeS(i) to be given byS[hi - εi,zpe], whereS(x) is a simple
polynomial function17

Note that in most instanceshi is given by the sum of a kinetic
energy and potential. For energies near the ZPE,hi would be
well represented by a harmonic oscillator Hamiltonian although
this is not essential. In any case,S[hi - εi,zpe] is a polynomial
in the momentum and coordinate of modei and thus modifies
the equations of motion in a straightforward fashion. This is
illustrated in an application to the Henon-Heiles system in the
next section. Before considering that application, we make some
remarks on other possible forms for the coupling potential and
how the switching off of mode coupling could be implemented.
One form that is very widely used is a simple multinomial
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H ) H0 + Vc(1 ,...,N) (1)

Vc(1 ,...,N) ) ∑
i>j

V(2)(i,j) + ∑
i>j>k

V(3)(i,j,k) + ‚‚‚ (2)

Vc(1 ,...,N) ) ∑
i>j

V(2)(i,j)S(i)S(j) +

∑
i>j>k

V(3)(i,j,k)S(i)S(j)S(k) + ‚‚‚ (3)

S(x) ) [0, x < 0

10x3 - 15x4 + 6x5, 0 e x e 1
1, x > 1 ] (4)
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representation ofVc, that is, an expansion about a minimum

In this case, one could simply multiply each term by the
appropriate product of switching functions.

Another more general strategy is to replace each mode
coordinateqi by S(i)qi. The advantage of this strategy is that it
can be implemented even in the absence of an analytical
expression forVc, for example, in direct-dynamics calculations.
In this case,Vc is given by the full potential (calculated “on-
the-fly”) minus the separable (harmonic or possible anharmonic
potential). Then each coordinate is replaced byS(i)qi, andVc-
(q1, ‚‚‚, qN) is replaced byVc(S(1)q1, ‚‚‚, S(N)qN). Thus, ifS(i)
approaches zero, then the variableS(i)qi approaches zero, its
reference value, and is decoupled from the coupling potential.
This would probably render analytical differentiation quite
complex, and one would have to resort to numerical differentia-
tion in order to propagate the classical equations of motion.

2.2. Application. We consider the degenerate Henon-Heiles
Hamiltonian of ref 15

h1 ) 1/2(p1
2 + q1

2) is clearly the Hamiltonian for the first
mode andh2 ) 1/2(p2

2 + q2
2) - 1/3q2

3 is the Hamiltonian for the
second mode, and the coupling term isV12 ) q1

2q2.
According to eq 3, the modified Hamiltonian is

wherex1 ) (h1(p1,q1) - a1)/(b1 - a1) and x2 ) (h2(p2,q2) -
a2)/(b2 - a2). Herea1, a2, b1, andb2 are constants that determine
the range over which the switching occurs.

We used the Velocity-Verlet algorithm to integrate the
equations of motion. In this algorithm,p and q are updated

according to the following equations

According to Hamilton’s equations

Thus

Since the Hamiltonian of the Henon-Heiles system (eq 6) and
the form of the switch function (eq 4) are known analytical
functions, all the derivatives can be calculated analytically.
However, for this exercise, all of the time derivativesq̆1, q̆2,
p̆1, p̆2, q̈1, andq̈2 were calculated using Mathematica 5.1.18

Results and Discussion

We considered the same total energy of 0.16 as in ref 15,
and this energy was equally divided between the two modes at

Figure 1. Mode energiesE1 and E2 and corresponding phase-plane plots. The horizontal dashed line is the conserved total energy along the
trajectory,ETOTAL, which equals 0.16.

Vc(q1, ‚‚‚, qN) ) ∑ Cn1‚‚‚nN
q1

n1 ‚‚‚ qN
nN (5)

H ) 1
2

(p1
2 + p2

2 + q1
2 + q2

2) + q1
2q2 - 1

3
q2

3 (6)

H ) h1(p1,q1) + h2(p2,q2) + S(x1)S(x2)V12(q1,q2) (7)

q(t + ∆t) ) q(t) + q̆(t)∆t + 1
2

q̈(t)∆t2 (8)

p(t + ∆t) ) p(t) + 1
2

(p̆(t) + p̆(t + ∆t))∆t (9)

p̆1 ) - ∂H
∂q1

≡ Hq1

and

p̆2 ) - ∂H
∂q2

≡ Hq2
(10)

q̆1 ) ∂H
∂p1

≡ Hp1

and

q̆2 ) ∂H
∂p2

≡ Hp2
(11)

q̈1 )
∂Hp1

∂p1
p̆1 +

∂Hp1

∂p2
p̆2 +

∂Hp1

∂q1
q̆1 +

∂Hp1

∂q2
q̆2 (12)

q̈2 )
∂Hp2

∂p1
p̆1 +

∂Hp2

∂p2
p̆2 +

∂Hp2

∂q1
q̆1 +

∂Hp2

∂q2
q̆2 (13)
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t ) 0. The phase space trajectories of these two modes for the
unconstrained dynamics and the mode energies are shown in
Figure 1. As seen, each mode loses all of its energy at some
time during the trajectory, and there is complete energy transfer
back and forth between the two modes. Also note that the energy
in a given mode can exceed the total energy, as seen in this
figure. This occurs when the energy in the other mode drops to
near zero.

We now apply mode switching with switch ranges 0.00-
0.08 and 0.02-0.10. The results for the first range are shown
in Figure 2 and for the second range in Figure 3. As seen, both
switch ranges work effectively and in neither case does the
switching actually reach the limit of zero, and so energy
exchange between the modes continues throughout this time
course of this trajectory. (Note that the energy range is not meant

to literally enforce the ZPE in this system, because that energy
is actually above the dissociation energy of this model.)

In summary, a new method to smoothly switch off mode
coupling has been proposed with the aim of mitigating the ZPE
leak has been presented and demonstrated for a two-mode
Henon-Heiles model.
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